Smarandache Curves of Spacelike Salkowski Curve with a Spacelike Principal Normal According to Frenet Frame

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spacelike Salkowski and anti-Salkowski Curves With a Spacelike Principal Normal in Minkowski 3-Space

A century ago, Salkowski [9] introduced a family of curves with constant curvature but non-constant torsion (Salkowski curves) and a family of curves with constant torsion but nonconstant curvature (anti-Salkowski curves). In this paper, we adapt definition of such curves to spacelike curves in Minkowski 3-space. Thereafter, we introduce an explicit parametrization of a spacelike Salkowski curv...

متن کامل

ASSOCIATED CURVES OF THE SPACELIKE CURVE VIA THE BISHOP FRAME OF TYPE-2 IN E₁³

The objective of the study in this paper is to define M₁,M₂-direction curves and M₁,M₂-donor curves of the spacelike curve γ via the Bishop frame of type-2 in E₁³. We obtained the necessary and sufficient conditions when the associated curves to be slant helices and general helices via the Bishop frame of type-2 in E₁³. After defining the spherical indicatrices of the associated curves, we obta...

متن کامل

Spacelike intersection curve of three spacelike hypersurfaces in E 41

In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E 1 .

متن کامل

Spacelike and Timelike Normal Curves in Minkowski Space-time

We define normal curves in Minkowski space-time E4 1 . In particular, we characterize the spacelike normal curves in E4 1 whose Frenet frame contains only non-null vector fields, as well as the timelike normal curves in E4 1 , in terms of their curvature functions. Moreover, we obtain an explicit equation of such normal curves with constant curvatures.

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi

سال: 2020

ISSN: 1307-9085

DOI: 10.18185/erzifbed.590950